Two Novel AP2/EREBP Transcription Factor Genes TaPARG Have Pleiotropic Functions on Plant Architecture and Yield-Related Traits in Common Wheat

نویسندگان

  • Bo Li
  • Qiaoru Li
  • Xinguo Mao
  • Ang Li
  • Jingyi Wang
  • Xiaoping Chang
  • Chenyang Hao
  • Xueyong Zhang
  • Ruilian Jing
چکیده

AP2/EREBPs play significant roles in plant growth and development. A novel, pleiotropic TaPARG (PLANT ARCHITECTURE-RELATED GENE), a member of the AP2/EREBP transcription factor gene family, and its flanking sequences were isolated in wheat (Triticum aestivum L.). Two TaPARG genes were identified and named as TaPARG-2A and TaPARG-2D. Their amino acid sequences were highly similar especially in the functional domains. TaPARG-2A on chromosome 2A was flanked by markers Xwmc63 and Xgwm372. TaPARG-2D was mapped to chromosome 2D. Subcellular localization revealed that TaPARG-2D was localized in the nucleus. The results of tissue expression pattern, overexpression in rice, association analysis and distinct population verification jointly revealed that TaPARG functions during the entire growth cycle of wheat. Its functions include regulation of plant architecture-related and yield-related traits. Association analysis, geographic distribution and allelic frequencies suggested that favored haplotypes Hap-2A-2 and Hap-2A-3 were selected in Chinese wheat breeding programs. Both favored haplotypes might be caused by a single amino acid substitution (His/Tyr). These results suggest that TaPARG is a regulatory factor in plant growth and development, and that the favored alleles might be useful for improving plant architecture and grain yield of wheat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Exogenous Brassinosteroid Application on Grain Yield, some Physiological Traits and Expression of Genes Related to This Hormone Signaling Pathway in Wheat under Drought Stress

To investigate the effect of exogenous brassinosteroid application on grain yield, catalase, chlorophyll content, membrane mtability index and gene expression of some genes involving in brassinosteroid signaling pathway (BES1 and BRI1) under drought stress, a split-split plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Im...

متن کامل

Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.

Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of ...

متن کامل

Overexpression of a Cotton Gene That Encodes a Putative Transcription Factor of AP2/EREBP Family in Arabidopsis Affects Growth and Development of Transgenic Plants

In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcrip...

متن کامل

The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.

APETALA2 (AP2) plays an important role in the control of Arabidopsis flower and seed development and encodes a putative transcription factor that is distinguished by a novel DNA binding motif referred to as the AP2 domain. In this study we show that the AP2 domain containing or RAP2 (related to AP2) family of proteins is encoded by a minimum of 12 genes in Arabidopsis. The RAP2 genes encode two...

متن کامل

Study of Expression Pattern of Some Transcription Factors in Wheat under Drought Stress and Zinc Nanoparticles

Under drought stress condition, the signaling system induces expression of certain genes to counteract the deleterious effects of environmental stress. Among the essential micronutrients for plant growth and development, zinc has an important role in many plant metabolic processes including gene expression and stress tolerance. In order to investigate the effect of drought stress and ZnO on r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016